Synthesis and crystal structure of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left\{\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right\}_{3}\right]$. Its role in the cyclotrimerization of 1-phenylbut-1-yn-3-one to $1,3,5$-triphenyltris(carboxymethyl) benzene

Giuliana Gervasio, Enrico Sappa
Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via Pietro Giuria 7, I-I0125 Torino (Italy)

and László Markó
Institute of Organic Chemistry, University of Veszprém, Research Group for Petrochemistry of the Hungarian Academy of Sciences, Egyetem u. 8, H-8200 Veszprém (Hungary)
(Received May 8, 1992)

Abstract

The reaction of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ with 1 -phenylbut-1-yn-3-one in refluxing toluene yields $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right\}\right]$, the symmetrical trimer $\left\{\mathrm{PhC}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right\}_{3}$, which were characterized by spectroscopic techniques, and the title complex, the structure of which has been elucidated by X-ray analysis.

The crystals are monoclinic $P 2_{1} / c$ with $a=10.640(2), b=17.741(4), c=17.845(4) \AA, \beta=90.50(3)^{\circ}, Z=4$. The molecule has a $\mathrm{Co}-\mathrm{Co}$ bond and the $\left\{\mathrm{PhC}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right\}_{3}$ chain links the cobalt atoms in a "flyover" arrangement.

To our knowledge, this is the first example of stepwise formation of a symmetrical benzene from an asymmetrical, internal alkyne via this type of intermediate.

1. Introduction

The cyclotrimerization of alkynes assisted by transition metals has been long known [1]; nickel, iron and cobalt carbonyls are catalysts in such reactions [2]. When $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ was used, evidence was obtained for the initial formation of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{RC}=\mathrm{CR}^{\prime}\right)\right]$ (Complexes 1) [3]; these are effectively involved in the catalytic cycle and can take up other acetylene molecules to give complexes of general formula $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}-\right.$ $\left(\mathrm{RC} \equiv \mathrm{CR}^{\prime}\right)_{3}$] (complexes 2) [4]. A structure based on a seven-membered cobaltacycle was originally proposed for the latter [5]; X-ray structure determinations on the complexes with $\mathrm{HC} \equiv \mathrm{CCMe}_{3}$ (complex 2a) [6] and $\mathrm{HC} \equiv \mathrm{CCF}_{3}$ (complex 2b) [7] showed that these derivatives contain two $\mathrm{Co}(\mathrm{CO})_{2}$ units and a six-carbon atom

[^0]flyover bridge formed by the head-to-tail-head-to-head trimerization of the alkynes. Oxidation with Br_{2} or drastic thermal treatment of complexes 2 gave 1,2,4substituted benzenes. These trimerizations, characterized by high regioselectivity, represent a useful preparative entry into the chemistry of asymmetrically substituted benzenes. For example, sterically strained $1,2,4-$ tri-t-butylbenzene was obtained for the first time via these reactions [2,5].

We are currently investigating the reactions of metal carbonyls with alkynes, dialkynes, and propargylamines; some of these are useful synthons for substituted aromatic derivatives or undergo co-cyclization reactions with nitriles giving condensed heterocyclic compounds [8]. We aimed for "intermediate models" [9] or trapped reaction intermediates [10] to better understand the alkyne oligomerization and cooligomerization processes.

Here we describe the reaction of $\mathrm{PhC}=\mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}$ \{1-phenylbut-1-yn-3-one, PBO \} with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$; we
obtained the expected $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{RC} \equiv \mathrm{CR}^{\prime}\right)\right]$ (complex 1a) but we also observed the formation of considerable amounts of a white organic product and a purple complex. These were $\left\{\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right\}_{3}(\mathrm{Com}-$ pound A) and the symmetrically substituted $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left\{\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right\}_{3}\right]$ (complex 2c). These products were characterized by elemental analyses, spectroscopy and mass spectrometry and the crystal structure of 2 c was determined by X-ray diffraction. To our knowledge this is the first example of symmetrically substituted complex of type 2. X-ray studies on the asymmetrically substituted 2a, 2b had been reported before [6,7]. The easy release of the $1,3,5$-substituted benzene in the relatively mild reaction is noteworthy.

2. Experimental details

$\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ (Strem Chemicals) and PBO (K\&K) were commercial products and were used as received; the reactions were performed under dry N_{2} in distilled, dried toluene. The reaction solutions were filtered under N_{2}, reduced to small volume under reduced pressure and purified on TLC preparative plates (Kieselgel P.F., Merck; eluants: mixtures of light petroleum $40-70^{\circ} \mathrm{C}$ and diethyl ether).

The products were analyzed with a F\&M CHN Analyzer and cobalt was determined by F. Pascher Laboratories (Remagen, Germany). IR spectra were measured on a Perkin Elmer 580 B instrument, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra on a Jeol JNM-270 FT instrument. Mass spectra were obtained on a Kratos MS-80 system.

2.1. Reaction of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ with PBO

$\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right](1.0 \mathrm{~g}, 2.92 \mathrm{mmol})$ and $\mathrm{PBO}(1.0 \mathrm{ml}, 5.2$ mmol) under N_{2} in refluxing toluene for 2 min yielded a dark purple solution containing 1 la as the main product ($0.77 \mathrm{~g}, 1.78 \mathrm{mmol}, 60 \%$), impure $2 \mathrm{c}(0.35 \mathrm{~g}, 0.59$ $\mathrm{mmol}, 20 \%$) and about $0.36 \mathrm{~g}(0.55 \mathrm{mmol})$ of the whitish compound \mathbf{A}. Yields of compound \mathbf{A} and of 2c were increased considerably at the expense of 1 a by allowing the reaction to proceed for about 10 min at reflux.

Complex 2c and compound A appeared on the TLC plates as a broad purple-whitish band; this was collected and crystallization was attempted from hep-tane- CHCl_{3} ($70: 30$) and cooling. A white precipitate mixed with small purple crystals of 2 c was separated by hand. The impure crystals of 2 c were recrystallized, giving compound \mathbf{A}, and well-formed purple crystals of 2c, which were separated by hand, washed with heptane, and air-dried (Yield $0.15 \mathrm{~g}, c a .8 \%$). A small sample of pure $2 \mathrm{c}(0.20 \mathrm{~g}, 0.38 \mathrm{mmol})$ was dissolved in toluene and kept at $+70^{\circ} \mathrm{C}$ for 2 h . After solvent

TABLE 1. Crystal data for $\mathrm{Co}_{2}(\mathrm{CO})_{4}\left[\mathrm{PhC}=\mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right]_{3}$

Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{Co}_{2} \mathrm{O}_{7}$
Colour, Habit	purple, prismatic
Crystal size	$0.2 \times 0.2 \times 0.4 \mathrm{~mm}$
Crystal system	Monoclinic
Space group	$P 2_{1} / c$
Unit cell dimensions	$a=10.640(2) \AA$
	$b=17.741(4) \AA$
	$c=17.845(4) \AA$
	$\beta=90.50(3)^{\circ}$
Volume	$3368.4(12) \AA^{3}$
Z	4
Formula weight	659.4
Density (calc.)	$1.300 \mathrm{Mg} \mathrm{m}^{-3}$
Absorption coefficient	$1.023 \mathrm{~mm}^{-1}$
$F(000)$	1340

evaporation a mixture of $2 \mathrm{c}(0.10 \mathrm{~g}, 0.19 \mathrm{mmol})$ and \mathbf{A} (0.09 g, ca. 0.12 mmol) was obtained. Some metal powder was also observed.

TABLE 2. Data for the collection of intensities, solution and refinement

Diffractometer used	Siemens P4
Radiation	Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$
Temperature	293 K
Monochromator	Highly oriented graphite crystal
2θ Range	2.0 to $50.0{ }^{\circ}$
Scan type	$2 \theta-\theta$
Scan speed	Variable; 4.00 to $15.00^{\circ} \mathrm{min}^{-1}$ in ω
Scan range (ω)	2.00° plus $\mathrm{K} \alpha$-separation
Background measurement	Stationary crystal and stationary counter at beginning and end of scan, each for 35.0% of total scan time
Standard reflections	2 measured every 50 reflections
Index ranges	$\begin{aligned} &-12 \leq h \leq 12,-21 \leq k \leq 21, \\ &-12 \leq l \leq 21 \end{aligned}$
Reflections collected	7600
Independent reflections	5960 ($R_{\text {int }}=10.84 \%$)
Observed reflections	$3777(F>5.0 \sigma(F)$)
Absorption correction	semi-empirical
Min./max. transmission	0.067/0.081
System used	Siemens shelxtl plus (PC Version)
Solution	Direct methods
Refinement method	Full-matrix least-squares
Quantity minimized	$\sum w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2}$
Hydrogen atoms	Riding model, fixed isotropic U
Weighting scheme	$w^{-1}=\sigma^{2}(F)+0.0100 F^{2}$
Number of parameters refined	361
Final R indices (obs. data)	$R=6.56, \mathrm{w} R=11.39 \%$
R Indices (all data)	$R=9.81, \mathrm{w} R=14.78 \%$
Goodness-of-fit	1.04
Largest and mean Δ / σ	1.676, 0.108
Data-to-parameter ratio	10.5:1
Largest difference peak	$1.83 \mathrm{e} \AA^{-3}$
Largest difference hole	$-0.40 \mathrm{e}^{\text {A }}{ }^{-3}$

2.1.1. Complex $1 a$

Found: $\mathrm{C}, 44.9 ; \mathrm{H}, 2.1 ; \mathrm{Co}, 27.1 . \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd.: C, 44.7 ; H, 1.9; Co, 27.4\%. IR ($\mathrm{C}_{7} \mathrm{H}_{16}$): $2100 \mathrm{~s}, 2066 \mathrm{vs}$, $2038 \mathrm{vs}(\mathrm{b}), 1670 \mathrm{w}(\mathrm{vb}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, r.t.): $7.50 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}), 2.45 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, r.t.): $31.1 \mathrm{~s}\left(\mathrm{CH}_{3}\right) ; 92.2 \mathrm{~s}(\mathrm{~b})(\mathrm{C} \equiv \mathrm{C}-\mathrm{R}) ; 128.3-$ $129.5 \mathrm{~m}(\mathrm{Ph}) ; 136.6 \mathrm{~s}$ (H-C=C); 198.2 (b) (6 CO); 201.1 $\mathrm{s}\{-\mathrm{C}(\mathrm{O})\} \mathrm{ppm}$.

2.1.2. Complex $2 c$

Found: $\mathrm{C}, 61.7$; $\mathrm{H}, 3.8$; $\mathrm{Co}, 17.6 . \mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Co}_{2} \mathrm{O}_{7}$ calcd.: $\mathrm{C}, 61.65 ; \mathrm{H}, 3.65 ; \mathrm{Co}, 17.79 \%$. IR ($\mathrm{C}_{7} \mathrm{H}_{16}$): 2070
s, 2044 vs, 2020 s(vb), $1710-1700 \mathrm{vs}, \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, r.t.); $7.55-7.35 \mathrm{~m}(15 \mathrm{H}, \mathrm{Ph}), 2.30 \mathrm{~s}, 2.06 \mathrm{~s}, 1.98$ s ($3,3,3 \mathrm{H}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, r.t.): 28.5 s , $31.4 \mathrm{~s}, 31.9 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 126.2-129.4 \mathrm{~m}(\mathrm{Ph}), 128.2 \mathrm{~s}, 128.9$ $\mathrm{s}, 129.1 \mathrm{~s}, 136.2 \mathrm{~s}, 140.0 \mathrm{~s}, 147.2 \mathrm{~s}$ (C_{6} ring carbons), $c a$. 200.0 (b) (fluxional CO's) ppm. Mass spectrum: $\mathbf{P}^{+}=$ $662 m / e$, loss of five fragments with $m / e=28$, followed by competitive fragmentation processes.

2.1.3. Compound \boldsymbol{A}

Found; C, 83.5; H, 5.7. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3}$ calcd.: C, 83.31;
$\mathrm{H}, 5.59 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, r.t.): $7.41 \mathrm{~m}, 7.16 \mathrm{~m}, 7.00$

TABLE 3. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{3}$)

	\boldsymbol{x}	y	z	$U_{\text {eq }}{ }^{\text {a }}$
$\mathrm{Co}(1)$	1534(1)	1096(1)	6117(1)	41(1)
$\mathrm{Co}(2)$	1787(1)	2431(1)	5788(1)	36(1)
C(1)	928(6)	1988(4)	6675(4)	39(2)
C(2)	1765(6)	1597(4)	7162(4)	39(2)
C(3)	2979(6)	1510(4)	6821(4)	35(2)
C(4)	3389(6)	2160(4)	6347(4)	32(2)
C(5)	3568(6)	2001(4)	5562(4)	35(2)
C(6)	2561(7)	1551(4)	5301(4)	41(2)
C(7)	-238(4)	2342(3)	6946(3)	42(3)
C(8)	-196	2718	7632	58(3)
C(9)	-1236	3129	7872	73(4)
C(10)	-2317	3163	7427	81(4)
C(11)	-2360	2787	6740	72(4)
C(12)	- 1320	2376	6500	57(3)
C(13)	1410(7)	1274(4)	7924(5)	45(3)
C(14)	236(10)	827(7)	8005(7)	71(4)
C(15)	4011(4)	1002(3)	7117(3)	41(2)
C(16)	3745	342	7511	52(3)
C(17)	4723	-94	7804	68(4)
C(18)	5967	129	7702	70(4)
C(19)	6234	788	7308	58(3)
C(20)	5256	1224	7015	46(3)
C(21)	4007(7)	2819(4)	6729(4)	35(2)
C(22)	3793(10)	2933(5)	7549 (4)	$58(3)$
C(23)	4566(4)	2308(3)	5052(3)	36(2)
C(24)	5767	1992	5078	58(3)
C(25)	6692	2247	4591	70(4)
C(26)	6417	2817	4077	69(4)
C(27)	5217	3133	4051	64(4)
C(28)	4292	2879	4538	50(3)
C(29)	2449(8)	1230(5)	4525(4)	52(3)
C(30)	3436(10)	682(6)	4292(6)	77(4)
O(1)	2044(6)	1437(4)	8449(3)	66(2)
O(2)	1557(8)	1369(5)	4120́ć4)	$90(3)$
O(3)	4657(5)	3251(3)	6383(3)	51(2)
C(31)	37(9)	850(5)	5718(5)	64(3)
O(31)	-889(7)	684(5)	5453(5)	106(3)
C(32)	2170(9)	166(5)	6057(5)	58(3)
O(32)	2585(7)	-412(4)	5991(4)	89(3)
C(33)	624(7)	2579(5)	5059(5)	54(3)
O(33)	-94(6)	2704(4)	4607(4)	83(3)
C(34)	1694(7)	3381(5)	6090(5)	52(3)
O(34)	1596(7)	3971(4)	6322(5)	92(3)

[^1]$\mathrm{m}(5,5,5 \mathrm{H} \mathrm{pH}), 1.91 \mathrm{~s}, 1.86 \mathrm{~s}, 1.80 \mathrm{~s}\left(3,3,3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ r.t.) : $31.6 \mathrm{~s}, 31.8 \mathrm{~s}, 32.5 \mathrm{~s}$ $\left(\mathrm{CH}_{3}\right), 127.4-133.9 \mathrm{~m}(\mathrm{Ph}), 136.8 \mathrm{~d}, 137.2 \mathrm{~d}, 138.1 \mathrm{~s}$, $140.6 \mathrm{~s}, 141.7 \mathrm{~s}, 143.9 \mathrm{~s}$ (skeletal C_{6}), $204.6 \mathrm{~s}, 205.9 \mathrm{~s}$, $206.2 \mathrm{~s}\left\{(\mathrm{CO}) \mathrm{CH}_{3}\right\} \mathrm{ppm}$. Mass spectrum: $\mathrm{P}^{+}=432$, loss of three fragments with $m / e=28$ along with complex and competitive fragmentation processes.
2.1.4. X-ray crystal data collection, structure determination and refinement for the complex 2 c

The crystal data and the measurement and refinement parameters are given in Tables 1 and 2, respectively. The fractional atomic coordinates and $U_{\text {eq }}$ are listed in Table 3.

Direct methods allowed the location of the Co atoms: subsequently the Fourier difference maps led to the location of all the other atoms. Some of the hydrogen atoms were located on the map: the phenyl and methyl groups were treated as rigid groups with the hydrogen atoms in calculated positions. During the last refinement cycles some peaks appeared round $\mathrm{C}(14)$ and $\mathrm{C}(30)$ attributable to disordered hydrogen atoms. These hydrogen atom positions were given a 0.5 occupancy factor.

3. Results and discussion

Complex 1a belongs to a well established class [3]. The analytic and spectroscopic data accord with the formulation $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left\{\mu-\mathrm{PhC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{CH}_{3}\right\}\right]$. Complex 2c has been identified as $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left\{\mathrm{PBO}_{3}\right]\right.$ and its structure is discussed below. Compound A has analyses, mass spectrum, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra consistent with a formulation as a PBO cyclotrimer.

Fig. 1. Molecular structure of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{PhC}=\mathrm{CC}\left(\mathrm{O}_{2} \mathrm{CH}_{3}\right\}_{3}\right]\right.$ with the thermal ellipsoids (50% probability) and with the atom labelling scheme.

The presence of more than onc signal for the CH_{3} in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, as well as for the $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ in the ${ }^{13} \mathrm{C}$ spectrum can be explained if the rotation of the $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ substituents is restricted, either because of sterical reasons or because of the conjugation of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ with the coplanar benzene ring. This would create different "conformers" with inequivalent (CO) and CH_{3} groups. The $1,3,5-$ substitution is also supported by the fact that \mathbf{A} is the only organic product found in the reaction. \mathbf{A} is formed upon heating 2c under mild conditions. The X-ray structure of the precursor 2 c also supports this formulation.

TABLE 4. Bond lengths (A)

$\mathrm{Co}(1)-\mathrm{Co}(2)$	2.455(1)	$\mathrm{Co}(1)-\mathrm{C}(31)$	1.794(9)
$\mathrm{Co}(1)-\mathrm{C}(32)$	1.787(9)	$\mathrm{Co}(1)-\mathrm{C}(1)$	1.980(7)
$\mathrm{CO}(1)-\mathrm{C}(2)$	$2.079(7)$	$\mathrm{Co}(1)-\mathrm{C}(3)$	2.109 (7)
$\mathrm{Co}(1)-\mathrm{C}(6)$	1.998(7)	$\mathrm{Co}(2)-\mathrm{C}(33)$	1.807(8)
$\mathrm{Co}(2)-\mathrm{C}(34)$	1.773 (8)	$\mathrm{Co}(2)-\mathrm{C}(1)$	1.997 (7)
$\mathrm{Co}(2)-\mathrm{C}(4)$	$2.025(6)$	$\mathrm{Co}(2)-\mathrm{C}(5)$	$2.085(7)$
$\mathrm{Co}(2)-\mathrm{C}(6)$	1.971(7)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.419(10)
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.476(8)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.441(9)
$\mathrm{C}(2)-\mathrm{C}(13)$	1.525(11)	C(3)-C(4)	1.497(9)
$\mathrm{C}(3)-\mathrm{C}(15)$	1.512(8)	C(4)-C(5)	1.443(9)
$\mathrm{C}(4)-\mathrm{C}(21)$	1.503(10)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.411(10)
$\mathrm{C}(5)-\mathrm{C}(23)$	$1.506(8)$	C(6)-C(29)	1.501(11)
C(13)-C(14)	1.488(13)	$\mathrm{C}(13)-\mathrm{O}(1)$	1.186(10)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.496(11)	$\mathrm{C}(21)-\mathrm{O}(3)$	1.206(9)
C(29)-C(30)	1.493(14)	$\mathrm{C}(29)-\mathrm{O}(2)$	1.208(11)
$\mathrm{C}(31)-\mathrm{O}(31)$	1.128(12)	$\mathrm{C}(32)-\mathrm{O}(32)$	1.124(11)
$\mathrm{C}(33)-\mathrm{O}(33)$	1.128(10)	C(34)-O(34)	1.130(11)

3.1. X-ray structure of complex $2 c$

The molecular structure of $2 c$ is shown in Fig. 1 and relevant distances and angles are given in Tables 4 and 5.

Complex 2c has a $\mathrm{CO}_{2}(\mathrm{CO})_{4}$ skeleton with two axial carbonyls and two equatorial carbonyls with respect to the $\mathrm{Co}(1) \mathrm{Co}(2) \mathrm{C}(1) \mathrm{C}(6)$ plane. The equation of the greatly puckered plane is, in fractional coordinates, $8.72 x+0.83 y+10.06 z=7.60$ with deviations of $-0.02(3) \AA$ for Co and of $0.09(1) \AA$ for C . This
ensemble is bridged by a substituted C_{6} chain forming a "flyover" arrangement of two joined allyl groups. Formally $\mathrm{C}(1)$ and $\mathrm{C}(6)$ form σ-bonds with $\mathrm{Co}(2)$ and $\mathrm{Co}(1)$, respectively and $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$ and $\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6)$ have π-interactions with $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$, respectively. Figures 2a and b show two views of the orientation of the $\mathrm{C}(1)-\mathrm{C}(6)$ chain with respect to the $\mathrm{Co}-\mathrm{Co}$ axis.

The $\mathrm{Co}(1)-\mathrm{C}(6)$ and $\mathrm{Co}(2)-\mathrm{C}(1)$ bond lengths are 1.998 (7) and 1.997 (7) \AA, respectively, whereas the π-interactions are within the ranges $1.980(7)-2.109(7) \AA$

TABLE 5. Bond angles (${ }^{\circ}$)

$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(31)$	103.8(3)	$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(32)$	146.5(3)
$\mathrm{C}(31)-\mathrm{Co}(1)-\mathrm{C}(32)$	95.0(4)	$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(1)$	52.2(2)
$\mathrm{C}(31)-\mathrm{Co}(1)-\mathrm{C}(1)$	95.9(4)	$\bigcirc(32)-\operatorname{Co}(1)-\mathrm{C}(1)$	153.2(4)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(2)$	$77.9(2)$	$\mathrm{C}(31)-\mathrm{Co}(1)-\mathrm{C}(2)$	123.9(4)
$\mathrm{C}(32)-\mathrm{Co}(1)-\mathrm{C}(2)$	114.0(3)	$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(2)$	40.8(3)
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(3)$	74.1(2)	$\mathrm{C}(31)-\mathrm{Co}(1)-\mathrm{C}(3)$	164.1(4)
$\mathrm{C}(32)-\mathrm{Co}(1)-\mathrm{C}(3)$	94.7(3)	$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(3)$	70.2(3)
$\mathrm{C}(2)-\mathrm{Co}(1)-\mathrm{C}(3)$	40.3(3)	$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{C}(6)$	51.3(2)
$\mathrm{C}(31)-\mathrm{Co}(1)-\mathrm{C}(6)$	107.4(4)	$\mathrm{O}^{(32)-C O(1)-C(6)}$	96.9(4)
$\mathrm{C}(1)-\mathrm{Co}(1)-\mathrm{C}(6)$	103.1(3)	$\mathrm{C}(2)-\mathrm{Co}(1)-\mathrm{C}(6)$	114.9(3)
$\mathrm{C}(3)-\mathrm{Co}(1)-\mathrm{C}(6)$	83.9(3)	$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(33)$	103.7(3)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(34)$	146.9(3)	$\mathrm{C}(33)-\mathrm{Co}(2)-\mathrm{C}(34)$	92.4(4)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(1)$	51.6(2)	$\mathrm{C}(33)-\mathrm{Co}(2)-\mathrm{C}(1)$	108.2(3)
$\mathrm{C}(34)-\mathrm{Co}(2)-\mathrm{C}(1)$	96.1(3)	$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(4)$	75.3(2)
$\mathrm{C}(33)-\mathrm{Co}(2)-\mathrm{C}(4)$	163.2(3)	$\mathrm{C}(34)-\mathrm{Co}(2)-\mathrm{C}(4)$	$97.2(3)$
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{C}(4)$	84.5(3)	$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(5)$	78.2(2)
$\mathrm{C}(33)-\mathrm{Co}(2)-\mathrm{C}(5)$	122.1(3)	$\mathrm{C}(34)-\mathrm{Co}(2)-\mathrm{C}(5)$	117.4(3)
$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{C}(5)$	115.6(3)	$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{C}(5)$	41.1(3)
$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{C}(6)$	52.3(2)	$\mathrm{C}(33)-\mathrm{Co}(2)-\mathrm{C}(6)$	94.8 (3)
$\mathrm{C}(34)-\mathrm{Co}(2)-\mathrm{C}(6)$	155.8(3)	$\mathrm{C}(1)-\mathrm{Co}(2)-\mathrm{C}(6)$	103.5(3)
$\mathrm{C}(4)-\mathrm{Co}(2)-\mathrm{C}(6)$	71.1(3)	$\mathrm{C}(5)-\mathrm{Co}(2)-\mathrm{C}(6)$	40.6(3)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{Co}(2)$	76.2(3)	$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	73.3(4)
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	112.9(5)	$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	141.5(5)
$\mathrm{Co}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	118.9(5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	122.2(6)
$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	65.8(4)	$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	71.0(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.7(6)	$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{C}(13)$	127.6(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(13)$	124.7(6)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(13)$	124.5(6)
$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	68.8(4)	$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	98.4(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	115.0 (6)	$\mathrm{Co}(1)-\mathrm{C}(3)-\mathrm{C}(15)$	121.6(4)
$C(2)-C(3)-C(15)$	124.6(6)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(15)$	116.2(5)
$\mathrm{Co}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	102.3(4)	$\mathrm{Co}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	71.7(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.1(6)	$\mathrm{Co}(2)-\mathrm{C}(4)-\mathrm{C}(21)$	113.7(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(21)$	118.1(6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(21)$	122.1(6)
$\mathrm{Co}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	67.3(4)	$\mathrm{Co}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	65.4(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	108.9(6)	$\mathrm{Co}(2)-\mathrm{C}(5)-\mathrm{C}(23)$	129.2(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(23)$	127.9(5)	C(6)-C(5)-C(23)	122.9(6)
$\mathrm{Co}(1)-\mathrm{C}(6)-\mathrm{Co}(2)$	76.4(3)	$\mathrm{Co}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	114.0(5)
$\mathrm{Co}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	74.0(4)	$\mathrm{Co}(1)-\mathrm{C}(6)-\mathrm{C}(29)$	118.6(5)
$\mathrm{Co}(2)-\mathrm{C}(6)-\mathrm{C}(29)$	132.6(5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(29)$	124.9(7)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	118.0(3)	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	121.6(3)
$\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{C}(14)$	120.2(7)	$\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{O}(1)$	118.0(7)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{O}(1)$	121.6(8)	C(3)-C(15)-C(16)	121.7(3)
$\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(20)$	118.2(3)	$\mathrm{C}(4)-\mathrm{C}(21)-\mathrm{C}(22)$	118.6(6)
$\mathrm{C}(4)-\mathrm{C}(21)-\mathrm{O}(3)$	120.8(7)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{O}(3)$	120.6(7)
$\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{C}(24)$	119.0(3)	$\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{C}(28)$	120.9(3)
$\mathrm{C}(6)-\mathrm{C}(29)-\mathrm{C}(30)$	117.0(7)	$\mathrm{C}(6)-\mathrm{C}(29)-\mathrm{O}(2)$	121.5(8)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{O}(2)$	121.3(8)	$\mathrm{Co}(1)-\mathrm{C}(31)-\mathrm{O}(31)$	178.1(8)
$\mathrm{Co}(1)-\mathrm{C}(32)-\mathrm{O}(32)$	177.2(8)	$\mathrm{Co}(2)-\mathrm{C}(33)-\mathrm{O}(33)$	176.9(8)
$\mathrm{Co}(2)-\mathrm{C}(34)-\mathrm{O}(34)$	175.7(8)		

and $1.971(7)-2.085(7) \AA$ for $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$, respectively. The two planes defined by the two allyl groups form a dihedral angle of 62°, similar to the value found for $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{H}\right)_{3}\right]$ [7] and quite different from that for $\left[\mathrm{Co}_{2}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{H}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]\left(90^{\circ}\right)$ [6]. The bond distances in the C_{6} flyover chains are in the range 1.41-1.50 \AA.

Complex 2c is chiral. It is only the third example of such a structure and the first to be symmetrically substituted. The other two, $\mathbf{2 a}$ and $\mathbf{2 b}$, were formed from alkylacetylenes and contain asymmetrically substituted C_{6} chains [6,7].

Complexes 2a and 2b are precursors of asymmetrically substituted $1,2,4$-benzenes whereas 2 c is the precursor of a symmetrical 1,3,5-benzene.

A comparison of the structures $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$ is given in Table 6.

3.2. The cyclo-oligomerization of PBO

The cyclotrimerization of PBO to compound \mathbf{A} probably occurs via the reaction sequence shown in Scheme 1, as already discussed for $\mathrm{HC} \equiv \mathrm{CR}$ [2a].

Step (a), leading to complexes 1 occurs easily for many alkynes, including PBO. In hypothetical step (b) steric and electronic effects due to the alkyne sub-

TABLE 6. Comparison of bond lengths (\AA) of the complexes 2a, 2b and 2c

	2a	2b	2c
$\mathrm{Co}-\mathrm{Co}$	-	$2.459(6)$	$2.455(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.41 av.	$1.39(3)$	$1.419(10)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.41 av.	$1.39(4)$	$1.441(9)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.50	$1.54(4)$	$1.497(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.41 av.	$1.47(3)$	$1.443(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.41 av.	$1.42(4)$	$1.411(10)$
$\mathrm{Co}-\mathrm{C}(\sigma)$	2.01 av.	$1.96(3)$	$1.980(7)$
		$1.98(3)$	$1.971(7)$
$\mathrm{Co}-\mathrm{C}(\pi)$	2.04 av.	$1.95(3)$	$1.980(7)$
		$2.05(3)$	$2.079(7)$
		$2.11(3)$	$2.109(7)$
		$1.95(3)$	$1.971(7)$
		$2.06(3)$	$2.025(6)$
		$2.02(3)$	$2.085(7)$
$\mathrm{C}(1) \cdots \mathrm{C}(6)$	3.2	$3.05(4)$	$3.12(1)$

stituents R, may lead to symmetrically or to asymmetrically substituted metallacycles (B). An alternative hypothesis is competition between alkyne replacement of CO in 1 and alkyne exchange [11]; this explains the different isomers of complexes 2 in the "cross reac-

Scheme 1.

Fig. 2. (a) View of the orientation of the flyover C_{6} chain with respect to the $C 0-C o$ axis. (b) View of the C_{6} chain showing the C_{2} axis of the flyover moiety.
tions" between $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{CF}_{3} \mathrm{C}_{\mathrm{Cl}} \mathrm{CCF}_{3}\right)\right] / \mathrm{HC} \equiv \mathrm{CCF}_{3}$ and $\left[\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{HC} \equiv \mathrm{CF}_{3}\right)\right] / \mathrm{CF}_{3} \mathrm{CECFF}_{3}[4 \mathrm{c}]$.

A few examples of complexes (B) have been fully characterized. We recently obtained $\left[\mathrm{CO}_{2}(\mathrm{CO})_{5^{-}}\right.$ $\left.\left\{\left(\mathrm{HC} \equiv \mathrm{CCMe}_{2}\right)_{2} \mathrm{NMe}\right\}\right]$ (Complex 3) [10] which is an intermediate in the co-cyclization of a dipropargylamine with RCN or $\mathrm{HC}=\mathrm{CPh}$; interestingly, this complex is also a catalyst for the cyclotrimerization of $\mathrm{HC} \equiv \mathrm{CPh}$.

Step (c) has not been directly obscrved for cobalt. However, $\left[(\mathrm{CO})_{2} \mathrm{Fe}\left(\mu-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)\left(\mu-\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{2}\left(\mathrm{Ph}_{2}\right) \mathrm{Rh}\right.\right.$ ($\mathrm{HC} \equiv \mathrm{CPh}$)] has been reported [12]. In this complex a rhodacyclopentadiene system is π-coordinated to $\mathrm{Fe}(\mathrm{CO})_{2}$ and $\mathrm{HC} \equiv \mathrm{CPh}$ is π-bonded to the rhodium. In Fig. 2a, the core of complex 2 c is a metallacyclopentadiene with a third alkyne "side-bound" to one carbon and the two metals. We have recently found that metallacycles $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\eta^{4}-\mathrm{C}_{4} \mathrm{R}_{4}\right)\right.$] [13] react with alkynes $\mathrm{HC} \equiv \mathrm{CR}^{\prime}$ to give $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{5}\left\{\left(\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mathrm{CO})\right.\right.$ $\left.\left.\left(\mathrm{C}_{2} \mathrm{R}_{2}\right)\left(\mathrm{HC} \equiv \mathrm{CR}^{\prime}\right)\right\}\right]$ with a seven carbon atom flyover ligand [14].

Step (d) is the consequence of the coordination of a third alkyne. The release of 1,2,4-benzenes occurred under rather drastic conditions (oxidation with Br_{2} or reflux at $150-170^{\circ} \mathrm{C}$ for 4 h); with PBO we obtained reasonable amounts of compound \mathbf{A} as the only organic product under relatively mild conditions and short reaction times.

Probably cyclotrimerization of alkynes on $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ occurs with comparable reaction sequences whether $\mathrm{HC} \equiv \mathrm{CR}$ or $\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CR}$ are involved. The final products probably depend on the electronic properties and steric requirements of the alkynes.

We are currently investigating the reactivity of PBO with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right],\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$, and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$.

The anisotropic thermal parameters of the Co, C and O atoms and the observed and calculated structure factors are available from the authors (G.G.).

Acknowledgment

Financial support to this work was obtained from Consiglio Nazionale delle Ricerche (Rome) and from Ministero dell'Università e della Ricerca Scientifica e Tecnologica as a Cooperation Grant between the Universities of Turin and Veszprém.

References

1 See for example (a) W. Hübel, in I. Wender and P. Pino (eds.), Organic Syntheses via Metal Carbonyls, Vol. 1, Wiley, New York, 1968, p. 273; (b) R. F. Heck, In I. Wender and P. Pino (eds.), Organic Syntheses via Metal Carbonyls, Vol. 1, Wiley, New York, 1968, p. 373; (c) C. A. Chang, C. G. Francisco, T. R. Gadek, J. A. King Jr., E. D. Sternberg and K. P. C. Vollhardt, in B. M. Trost and R. Hutchinson (eds.), Organic Syntheses Today and Tomorrow, Pergamon Press, New York, 1981; (d) P. L. Pauson, Tetrahedron, 41 (1985) 5855; (e) N. E. Schore, Chem. Rev., 88 (1988) 1081; (f) E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 83 (1983) 203.
2 (a) G. Palyi, G. Varadi and L. Marko, in I. Bernal (ed.), Stereochemistry of Organometallic and Inorganic Compounds, Vol. 1, Elsevier, Amsterdam, 1986, p. 358; (b) G. Süss-Fink and F. Neumann, in F. R. Hartley (ed.), The Chemistry of the MetalCarbon Bond, Vol. 5, Wiley, New York, 1989, p. 231.
3 (a) W. G. Sly, J. Am. Chem. Soc., 81 (1959) 18; (b) F. A. Cotton, J. D. Jamerson and B. R. Stults, J. Am. Chem. Soc. 98 (1976) 1774; (c) D. Gregson and J. A. K. Howard, Acta Crystallogr., Sect. C, 39 (1983) 1024.
4 (a) U. Krüerke and W. Hübel, Chem. Ber., 94 (1961) 2829; (b) R. S. Dickson and D. B. W. Yawney, Aust. J. Chem., 20 (1967) 77; R.S. Dickson and D. B. W. Yawney, Aust. J. Chem., 22 (1969) 533; (c) R. S. Dickson and P. J. Fraser, Aust. J. Chem., 23 (1970) 475.

5 U. Krüerke, C. Hoogzand and W. Hübel, Chem. Ber., 94 (1961) 2817.

6 O. S. Mills and G. Robinson, Proc. Chem. Soc., 187 (1964).
7 R. S. Dickson, P. J. Fraser and B. M. Gatehouse, J. Chem. Soc., Dalton Trans., (1972) 2278.
8 (a) L. P. Battaglia, D. Delledonne, M. Nardelli, G. Predieri, G. P. Chiusoli, M. Costa and C. Pelizzi, J. Organomet. Chem., 363 (1989) 209; (b) G. P. Chiusoli, M. Costa and C. Pelizzi, New J. Chem., 14 (1990) 465.
9 G. Predieri, A. Tiripicchio, M. Tiripicchio Camellini, M. Costa and E. Sappa, Organometallics, 9 (1990) 1729.
10 M. Costa, G. Predieri, A. Tiripicchio, M. Tiripicchio Camellini and E. Sappa, J. Organomet. Chem., 423 (1992) 129.
11 G. Cetini, O. Gambino, R. Rossetti and E. Sappa, J. Organomet. Chem., 8 (1967) 149.
12 A. M. Arif, D. J. Chandler and R. A. Jones, Organometallics, 6 (1987) 596.

13 (a) R. Giordano, E. Sappa, D. Cauzzi, G. Predieri, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 412 (1991) C14.
14 See for example (a) J. Meunier-Piret, P. Piret and M. Van Meerssche, Acta Crystallogr., 19 (1965) 85; (b) E. Sappa, L. Milone and G. D. Andreetti, Inorg. Chim. Acta, 13 (1975) 67.

[^0]: Correspondence to: Professor G. Gervasio.

[^1]: ${ }^{2}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

